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SUMMARY

The immersed boundary approach for the modeling of complex geometries in incompressible flows is
examined critically from the perspective of satisfying boundary conditions and mass conservation. It
is shown that the system of discretized equations for mass and momentum can be inconsistent, if the
velocity is used in defining the force density to satisfy the boundary conditions. As a result, the velocity
is generally not divergence free and the pressure at locations in the vicinity of the immersed boundary is
not physical. However, the use of the pseudo-velocities in defining the force density, as frequently done
when the governing equations are solved using a fractional step or projection method, combined with the
use of the specified velocity on the immersed boundary, is shown to result in a consistent set of equations
which allows a divergence-free velocity but, depending on the time step, is shown to have the undesirable
effects of inaccurately satisfying the boundary conditions and allowing a significant permeability of the
immersed boundary. If the time step is reduced sufficiently, the boundary conditions on the immersed
boundary can be satisfied. However, this entails an unacceptable increase in computational expense. Two
new methods that satisfy the boundary conditions and allow a divergence-free velocity while avoiding
the increased computational expense are presented and shown to be second-order accurate in space. The
first new method is based on local time step reduction. This method is suitable for problems where the
immersed boundary does not move. For these problems, the first new method is shown to be closely
related to the second new method. The second new method uses an optimization scheme to minimize
the deviation from the interpolation stencil used to represent the immersed boundary while ensuring a
divergence-free velocity. This method performs well for all problems, including those where the immersed
boundary moves relative to the grid. Additional results include showing that the force density that is added
to satisfy the boundary conditions at the immersed boundary is unbounded as the time step is reduced
and that the pressure in the vicinity of the immersed boundary is unphysical, being strongly a function of
the time step. A method of computing the total force on an immersed boundary which takes into account
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the specifics of the numerical solver used in the iterative process and correctly computes the total force
irrespective of the residual level is also presented. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most difficult tasks in the numerical simulation of fluid flow is the generation of a grid
around the object being modeled. This has always involved a large amount of time-consuming user
interaction. If the object is moving and/or deforming, then the necessary regridding is an even
greater and computationally expensive problem. After regridding, the solution variables must be
transferred (i.e. interpolated) from the old to the new grid. This interpolation is a source of error
and may also destroy the conservative properties of numerical schemes. The immersed boundary
method [1–4] has the potential to simplify these problems associated with the grid. In particular,
the computation of the grid around the object being modeled can be completely automated. In the
immersed boundary method, the Navier–Stokes equations are generally solved on a Cartesian grid,
which removes the effort needed to generate a body-fitted grid and enables the use of efficient
numerical methods that can be parallelized in a relatively easy manner. The influence of objects on
the flow is simulated by the addition of a force density (which represents the force of the surface
of the object on the fluid) to the Navier–Stokes equations. This force density, if chosen properly,
should result in a solution to the Navier–Stokes equations which satisfies the boundary conditions
on the surface of the object. This is in contrast to other methods such as body-fitted curvilinear or
unstructured grids, which require the grid to be built around or inside the objects being modeled.

While there are several methods of defining the force density added to the Navier–Stokes
equations, the method of [5] has been widely used for flows in which the motion of the boundary
is prescribed [3, 6–16]. The original immersed boundary method of [1] has been generally applied
to flows in which the boundary is interacting with and deforming as a result of the flow. The lack
of a stability restriction on the time step and lack of user defined parameters in the method of [5]
appear to be the major reasons for its use.

The addition of the force density to the momentum equations, as done in the method of
[5], to force the velocity to satisfy boundary conditions on the object’s surface is equivalent to
replacing certain momentum equations with interpolation equations involving only the velocity. As
a consequence of these replacements, the resulting system of equations may form an inconsistent
set of equations. With the iterative methods used in the present work to solve the discretized system
of equations, this inconsistency results in an inability to obtain a divergence-free velocity. As the
incompressible Navier–Stokes equations are generally solved using a fractional step or projection
method, the force density is frequently defined using the pseudo-velocity instead of the velocity
[11, 12, 15]. This is shown to result in a consistent set of equations; however, the present work
shows that using the pseudo-velocity to define the force density can result in poor satisfaction
of the boundary conditions on the surface of the object, which may result in permeability of an
impermeable surface. However, the poor satisfaction of boundary conditions on the surface of
the object may not greatly impact gross metrics such as drag coefficients; the authors and others
[3, 7, 8, 12, 15] have computed drag coefficients for blunt body flows such as cylinders and spheres
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that have closely matched those obtained experimentally and from computational work involving
body-fitted meshes. The present work demonstrates that satisfaction of the boundary conditions
on the surface of the object is strongly a function of the time step, if the pseudo-velocity is used
to define the force density. The authors present flows for which permeability, resulting from poor
satisfaction of the boundary conditions on the surface of the object, is a significant problem and
propose two new methods that correct the problem. This permeability can be a significant problem
if the surface of the object contains an opening through which all the flow should pass that has a
small area compared with the impermeable surface area of the object; a small leakage through the
surface of the object over a large area can drastically reduce the flow through the opening. The new
methods presented are based on the concept of satisfying the boundary conditions at the immersed
boundary as closely as possible while enforcing a divergence-free velocity. In addition, regardless
of whether the velocity or pseudo-velocity is used to define the force density, the pressure at
certain points in the vicinity of the immersed boundary is shown to be unphysical. Also, a method
of computing the total force on an immersed boundary which correctly computes the total force
irrespective of the residual level is presented.

2. GOVERNING EQUATIONS AND DISCRETIZATION

2.1. Spatial discretization

The governing equations of interest in the present work are the non-dimensional non-conservative
unsteady Navier–Stokes equations (Equations (1) and (2)). In the present work, the velocity vector

is denoted by u, the individual components of which are defined by u=
(
u

v

)
.

�u
�t

+ u · ∇u= −∇ p + 1

Re
∇2u (1)

∇ · u= 0 (2)

Using finite differences, Equations (1) and (2) are discretized on a staggered grid as shown in
Figure 1. The staggered grid is used to avoid the appearance of spurious modes in the pressure field.
In two dimensions, each pressure grid point is surrounded by four velocity grid points. Pressure is
not needed or defined on non-periodic boundaries. For the convective terms, a third-order upwind
scheme is used [17]. Due to the staggered grid, none of the velocity components are stored at
the same location. They are, however, needed at the same location in order to compute the terms
of u j (�ui/�x j ), where i �= j . They are obtained by fitting a two-dimensional Lagrange surface
over the point in question. The fitting uses products of six point Lagrange polynomials, resulting
in a total of 36 points used to fit the surface, and is sixth-order accurate. The number of points
and hence the accuracy involved is retained as the boundary of the flow domain is approached.
The diffusive terms are represented by sixth-order accurate central difference schemes [17]. The
pressure gradient term and the terms in the continuity equation are represented by two-point
second-order accurate centered stencils. In general, except for certain flow problems indicated in
the present work, the order of all stencils is retained as a non-periodic boundary is approached.
This is done by keeping the number of points in the stencil constant while shifting toward the
boundary the point at which the derivative is evaluated. For a centered scheme, this results in
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Figure 1. Staggered grid and mass conservation cell (shaded).

moving from a centered stencil to one that is biased away from the boundary. The stencils are
not changed in the vicinity of an immersed boundary. The overall spatial accuracy of the scheme
is determined by the lowest order finite differences used and is therefore second-order accurate.
Further details of the finite difference schemes and the computer code used in the present work are
given in [17]. Sixth-order accurate discretizations are used for the convective and diffusive terms
to avoid their error dominating the second-order accurate continuity and pressure gradient terms
which are the focus of the present work.

2.2. Temporal discretization

The spatially discretized convective and diffusive terms are integrated in time using either the
explicit third-order Adams–Bashforth scheme (Equation (3)), the fully implicit first-order scheme
or the third-order Adams–Moulton scheme (Equation (4)). The time step for which the solution is
sought is denoted by n + 1.

un+1 − un

�t
= −∇ pn+1 + !n

!n = 23

12

(
1

Re
∇2un − (u · ∇u)n

)
− 16

12

(
1

Re
∇2un−1 − (u · ∇u)n−1

)
+ 5

12

(
1

Re
∇2un−2 − (u · ∇u)n−2

) (3)

The first-order fully implicit scheme (�= 1, Un = 0) is used for steady-state problems for which
time accuracy is not an issue and the additional stability of the scheme at low Re is desired. The
pressure gradient term is integrated in time using the fully implicit scheme. Equation (2), which
expresses conservation of mass, does not contain a temporal derivative; all terms in it are evaluated
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at the n + 1 time step.

un+1 − un

�t
= −∇ pn+1 + �

(
1

Re
∇2un+1 − (u · ∇u)n+1

)
+Un

fully implicit→ �= 1, Un = 0

Adams–Moulton→ �= 5

12
, Un = 8

12

(
1

Re
∇2un − (u · ∇u)n

)
− 1

12

(
1

Re
∇2un−1 − (u · ∇u)n−1

)
(4)

2.3. Discretized system solved at each time step

If the explicit time integration scheme (Equation (3)) is used for the convective and diffusive terms,
the discretized system solved at each time step is linear and relatively simple (as the complicated
convective and diffusive terms appear only at previous time steps). Representing the pressure
gradient and the continuity equation by finite differences, the system of equations to be solved at
each time step is given by the following equations (�xui , �yv

j , �xi , �y j are defined in Figure 1):

un+1
i, j − un+1

i−1, j

�xui
+ vn+1

i, j − vn+1
i, j−1

�yv
j

= 0 (5)

un+1
i, j

�t
+ pn+1

i+1, j − pn+1
i, j

�xi
= Xn

i, j where Xn
i, j represents all terms at previous time steps

vn+1
i, j

�t
+ pn+1

i, j+1 − pn+1
i, j

�y j
= Yn

i, j where Yn
i, j represents all terms at previous time steps

(6)

Equations (5) and (6) evaluated at all grid points in the computational domain can be written in
matrix form as Equation (7), where q is the vector of all discrete variables (un+1, vn+1, pn+1)
over the entire computational domain and R is on the right-hand side:

Aq= R (7)

It can be shown that A has a non-zero determinant, if one of the discrete divergence equations is
replaced by an equation that sets the pressure to a constant at one grid point, which is necessary
as pressure can only be determined up to a constant in an incompressible flow with specified
velocity boundary conditions. As a result, there is a guaranteed solution at each time step, which
may be found by any number of direct or iterative methods. When the implicit time integration
scheme (Equation (4)) is used, the resulting system of equations to be solved at each time step is
non-linear and much more complicated with A in Equation (7) depending linearly on the velocity.
In the present work, the solution to the systems of equations arising from both explicit and implicit
time integration of the convection–diffusion terms is obtained by the use of a colored version of
symmetric coupled Gauss Seidel (SCGS) [17, 18].
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1850 F. MULDOON AND S. ACHARYA

3. IMMERSED BOUNDARY METHOD, BI METHOD

The surface of an object placed or immersed in a fluid will exert a stress on the fluid; the concept
of the immersed boundary method is that the presence of this object in the fluid can be represented
by solving the Navier–Stokes equations (Equations (1) and (2)) while taking into account the
stress which the object exerts on the fluid. The stress which the immersed boundary exerts on the
fluid has dimensions of force per area, however, the momentum equations have dimensions of
force per volume. Therefore, the stress which the immersed boundary exerts on the fluid must be
transformed into a force density which may then be added to the momentum equations.

3.1. Defining the force density

This force density (denoted by Fn+1) represents the force of the object on the fluid, and is chosen
so that the velocity will satisfy the appropriate boundary conditions on the object’s surface (which
is also referred to as the immersed boundary). A number of different forms have been used for Fn+1

[1, 2, 4, 5]. The form of the force density used in [1, 4] is suitable for objects that are interacting
(i.e. deforming) with the flow. The present work is concerned with rigid non-deforming objects
for which the method of [5] is intended and used in [3, 7–16]. This method avoids the severe time
step restrictions and the difficulty in choosing two free parameters of the method of [2] and is the
basis for the methods used in the present work. In the method of [5], after applying the spatial
and temporal discretization schemes (without loss of generality the method is described using the
explicit scheme, Equation (3)), the velocity at the n + 1 time step can be written as:

un+1 − un

�t
=−∇ pn+1 + !n + Fn+1 (8)

Denoting the desired velocity on the immersed boundary at the n+1 time step by un+1
IB (where IB

indicates points on the immersed boundary), the value of Fn+1 that results in un+1
IB at the boundary

is simply:

Fn+1 = un+1
IB − un

�t
− (−∇ pn+1 + !n) (9)

This is equivalent to setting un+1 =un+1
IB at every time step (i.e. replace Fn+1 in Equation (8)

with Fn+1 from Equation (9)), if the immersed boundary coincides with the velocity grid points;
if not, then an interpolation operator will be necessary to find un+1 at the grid points (near
the immersed boundary), where the force density Fn+1 is added. This operator is written as
L(un+1

NB , un+1
IB ) = LNB(un+1

NB ) + L IB(un+1
IB ), where the subscript NB indicates neighboring grid

points on the finite difference grid (not necessarily on the immersed boundary) and LNB, L IB
are a set of coefficients depending on the interpolation scheme, the grid and the position of the
immersed boundary. If Equation (9) is substituted into Equation (8) (using the interpolation stencil),
the following equation results:

un+1 − un

�t
=−∇ pn+1 + !n+

Fn+1︷ ︸︸ ︷(
LNB(un+1

NB ) + L IB(un+1
IB ) − un

�t
− (−∇ pn+1 + !n)

)
(10)
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The above equation simplifies to Equation (11), which replaces the discretized momentum equation
at grid points adjacent to the immersed boundary at which the force density Fn+1 is added (hereafter
called immersed boundary points). This method is referred to in the present work by the acronym
‘BI’ for ‘Basic Interpolation’.

un+1 = LNB(un+1
NB ) + L IB(un+1

IB ) (11)

3.2. Selection of immersed boundary points

As the Cartesian grid points will generally not coincide with the immersed boundary, it is necessary
to decide at which grid points Fn+1 will be added; these grid points being termed immersed
boundary points. It is conceivable to add the force density at all grid points. However, as the
influence of an immersed boundary on a distant grid point would be expected to be small, it makes
physical and computational sense to limit the addition of Fn+1 to a subset of grid points near the
immersed boundary. The selection scheme to determine this subset of grid points is as follows. All
interior velocity points are examined to see if a boundary lies between them and one or more of its
four neighbors (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1). These grid points are marked as possible
immersed boundary points. Each mass conservation cell (Figure 1) is then examined to see if the
four velocity grid points that surround it are possible immersed boundary points. If they are, then
all four of the points are defined as immersed boundary points. The result of this selection process
is that all immersed boundary points belong to either one or two mass conservation cells that have
all four velocity grid points determined by the immersed boundary interpolation procedure. Some
investigators [15], when representing flow over an object, have chosen to add the force density
only at grid points on or inside the object. The rational for doing this is that only the flow outside
the object is of interest. However, this approach prevents modeling of immersed boundaries with
a thickness less than the spacing between velocity grid points, where grid points on either side of
the immersed boundary lie in the fluid region and must have the force density added to satisfy
the boundary conditions on the immersed boundary. This one-sided approach is not used in the
present work as no distinction is made between the inside or outside of an immersed boundary.

3.3. Interpolation operator

Once a choice has been made of the grid points at which the force density will be added, a value
for the force density must be determined. The determination of Fn+1 at a velocity grid point is
equivalent to setting the velocity at that grid point to a desired value. As the grid points will generally
not coincide with the immersed boundary, the determination of what value to set the velocity to
will require an interpolation operator L(un+1

NB ,un+1
IB ). This interpolation operator will interpolate

between the velocity of the immersed boundary (un+1
IB ) and velocities (un+1

NB ) at neighboring grid
points to find a value for the velocity at a point at which the force density is added, i.e. an
immersed boundary point. The simplest choice is one-dimensional interpolation along coordinate
lines. For instance, the immersed boundary point ui, j−1 in Figure 2 can be determined by second-

order accurate one-dimensional interpolation in the + j direction using the points u+ j
IB , ui, j , ui, j+1

(where uIB is the x component of velocity on the immersed boundary). However, ui, j−1 could
also be determined by the second-order accurate one-dimensional interpolation in the +i direction
using the points u+i

IB , ui+1, j−1, ui+2, j−1. In general, in two dimensions, there can be up to four
possible directions to interpolate. The present work resolves this ambiguity by interpolating in the
direction in which the immersed boundary is closest to the grid point (the stencil chosen is shown in
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Figure 2. A stencil for interpolation of immersed boundary points.

Figure 2). While a wide variety of interpolation schemes have been developed and used [3, 7–16],
the key point here is that the method of [5] is equivalent to replacing the momentum equation at
each immersed boundary point with an equation for the velocity that is a function of velocities
(not pressure) at other grid points. The present work uses second-order accurate one-dimensional
interpolation with the choice of stencils described above for the operator LNB(un+1

NB ) + L IB(un+1
IB )

in Equation (11).

3.4. Rank deficient matrix

An example of the result of replacing the momentum equation at immersed boundary points with
an interpolation stencil is shown for the simple geometry and immersed boundary in Figure 3. For
clarity, one-sided linear interpolation of only the x component of velocity is used at the immersed
boundary. The grid spacing is a constant in both dimensions, while uIB is the x component of
velocity on the immersed boundary; no slip boundary conditions are applied on all four walls.
Using the method of [5] force density is added at the circled points, i.e. the momentum equation at
the circled points in Figure 3 is replaced with the interpolation stencil arising from the immersed
boundary. The resulting matrix equation (i.e. Equation (7), where A has been modified by the
immersed boundary method) for all interior velocities and pressures is found (using the symbolic
algebra package Maple c©) to be rank deficient of degree 1 less than the dimension of the matrix.
Note that as pressure, in an incompressible fluid with specified velocity boundary conditions, can
be determined only up to a constant, the pressure at one point is set to a constant. This rank
deficiency means that, depending on the right-hand side of Equation (7), the system of equations
may be inconsistent and have no solution or may have an infinite number of solutions. More
complicated immersed boundaries may result in matrices with higher degrees of rank deficiency.
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Figure 3. An immersed boundary resulting in a rank deficient matrix.

3.5. Conservation of mass

A problem with the interpolation procedure of Section 3.3 is that the continuity equation is not
taken into account. Thus, it is likely that the velocity resulting from applying Equation (11) will not
be divergence free. For an example of how the interpolation procedure can violate conservation of
mass, consider the four velocities, ui−2, j , ui−1, j , vi−1, j−1, vi−1, j , defining the mass conservation
cell at the pi−1, j location in Figure 2. These velocities are not determined from the solution of
the discretized Navier–Stokes equations. They are determined by the interpolation scheme, which
makes them a linear combination of velocities at other grid points. In general, as the interpolation
scheme is defined without regard to the continuity equation, the velocities obtained from the
interpolation scheme will not satisfy conservation of mass for the cell shown. This will cause
the magnitude of the pressure in these mass conservation cells to slowly increase without bound,
if a solution method such as artificial compressibility, SCGS, colored SCGS, SCSG-PPV [17] or
SCGS-PP [17] is used, in which the change in pressure from one iteration to the next is proportional
to the divergence. However, as this pressure does not appear in any discrete momentum equation
(as a result of the two-point pressure gradient stencil and the selection criteria for immersed
boundary points), the solution does not diverge. This pressure is, therefore, completely decoupled
from all other discrete variables. With the iterative solver used in the present work, the result
of attempting to solve the inconsistent set of equations is a ‘solution’ that satisfies the boundary
conditions resulting from the immersed boundary, but does not conserve mass. In the present work,
this ‘solution’ is obtained from the BI method. Another way of viewing this failure to conserve
mass is that the replacement of the momentum equation at each immersed boundary point with
an equation for the velocity that is a linear combination of velocities at non-immersed boundary
grid points can result in changing A in Equation (7) to a rank deficient matrix. This rank deficient
matrix equation is an inconsistent set of equations as a result of attempting to satisfy both the
divergence-free constraint and the boundary conditions resulting from the immersed boundary (as
expressed by the interpolation operator, Equation (11)).
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There is little work in the literature regarding this issue of inconsistency and mass conservation;
a method by which a mass source term is added to the continuity equation (Equation (2)) is
presented in [15]. This mass source term is equal to the negative of the mass source (resulting only
from the contribution of immersed boundary points in that cell) at each mass conservation cell.
The velocities at these immersed boundary grid points are obtained by interpolating the pseudo-
velocities, which are obtained by advancing the momentum equations in time without the pressure
gradient at the current time step. By definition, the sum of this added mass source term over the
entire domain is zero and, therefore, global mass conservation is not affected. However, because
adding the force density term (which using the method of [5] is equivalent to interpolating the
velocity onto the immersed boundary point) should depend on the velocity at the time step being
solved for, and not on the pseudo-velocity, the resulting velocity will not satisfy the desired velocity
at the boundary. Another issue is that due to the added mass source term, the velocity obtained
by using the pressure determined from the pressure-Poisson equation will not be divergence free.
However, in [15], results for various cases are presented showing improvements due to the addition
of the mass source term. A method of ensuring mass conservation was discussed in [19], where
the scheme was found to be spatially first-order accurate. Specifics of the scheme in [19] were not
presented and we are unable to make comparisons with it.

While only the Navier–Stokes equations are solved in the present work, the ability to obtain
a mass conserving velocity field is critical if this velocity is used in the solution of equations
governing the transport of energy and/or chemical species. In mass conservation cells in which
mass is not conserved, there will be a source or sink of energy and/or chemical species which can
result in unbounded solutions.

4. DEFINITION OF FORCE DENSITY USING PSEUDO-VELOCITY, PV METHOD

4.1. Fractional step and definition of pseudo-velocities

A fractional step (or projection) method [20] to solve Equation (3) or (4) and Equation (2) is defined
by splitting Equation (3) (explicit time integration) or Equation (4) (implicit time integration) into
two parts (Equations (12) and (14) or Equations (13) and (14), respectively). The splitting is done
to define a pseudo-velocity (̃u) that does not depend on the pressure at the n + 1 time step (the
time step at which the solution is being sought).

ũ − un

�t
=!n (12)

ũ − un

�t
= �

(
1

Re
∇2ũ − (̃u · ∇ũ)

)
+Un (13)

un+1 − ũ
�t

= −∇ pn+1 (14)

Equation (12) or (13) is advanced in time to obtain a pseudo-velocity ũ (note that Equation
(13) is a coupled non-linear system of the components of the velocity vector). This pseudo-
velocity generally will not satisfy the divergence-free condition. An equation for pressure, which
can be used to obtain a divergence-free velocity, can be obtained by taking the divergence of
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Equation (14) and setting the divergence of the velocity at the n + 1 time step to zero, resulting
in Equation (15).

∇ · ũ= �t∇2 p (15)

Once the pressure field is obtained from the solution of Equation (15), the divergence-free
velocity at the n + 1 time step can be obtained from Equation (14). While the fractional step
approach and numerous related variants (such as PISO [21], SIMPLE [22] and SIMPLER [22])
which involve an intermediate velocity that does not depend on the pressure gradient at the current
time step are the most common methods for solving the incompressible Navier–Stokes equations,
other methods such as SCGS [18], SCGS-PP [17], SCGS-PPV [17], artificial compressibility [23]
and the direct solution of Equation (3) or (4) and Equation (2) can be used to obtain a solution.

4.2. Calculation of force density

4.2.1. Explicit time integration scheme. In the commonly used fractional step or projection meth-
ods, the pseudo-velocity is readily available, while the velocity is unknown at the step in which
the force density is needed. For this reason, the force density has been defined using the pseudo-
velocity [8, 9, 11, 12, 15]. In this case, at immersed boundary points, instead of choosing Fn+1

such that the velocity (un+1) satisfies a boundary condition on the immersed boundary, Fn+1 is
chosen so that the pseudo-velocity (̃u) satisfies a boundary condition on the immersed boundary.
The result is Equation (16), where the force density depends on the pseudo-velocity and therefore
depends only on the previous time step and not on the pressure gradient or velocity on the finite
difference grid at the n + 1 time level.

Fn+1 = LNB(ũNB) + L IB(un+1
IB ) − un

�t
− !n (16)

As the immersed boundary generally does not coincide with the grid points, the interpolation
operator LNB() + L IB() is used to define the pseudo-velocity at immersed boundary points in
Equation (16). Points in the interpolation operator that lie on the immersed boundary can be taken
as the velocity (un+1

IB , since this is known), as opposed to the pseudo-velocity.
Substituting for Fn+1 in Equation (8) using Fn+1 from Equation (16):

un+1 − un

�t
= −∇ pn+1 + !n +

⎛⎜⎜⎜⎜⎝
Fn+1︷ ︸︸ ︷

LNB(̃uNB) + L IB(un+1
IB ) − un

�t
− !n

⎞⎟⎟⎟⎟⎠
Simplifying:

un+1 − (LNB(̃uNB) + L IB(un+1
IB ))

�t
= −∇ pn+1 (17)

Using the definition of ũ from Equation (12) and the linearity of LNB, this can be written as
Equation (18), which replaces the momentum equation (Equation (3)) at immersed boundary
points.

un+1 − (LNB(unNB) + L IB(un+1
IB ))

�t
= −∇ pn+1 + LNB(!nNB) (18)
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4.2.2. Implicit time integration scheme. Note that the splitting of Equation (4) as used in the
fractional step method results in the sum of the two split parts (Equations (13) and (14)) equaling
Equation (19) instead of Equation (4). It may be thought that the problem of satisfying the boundary
conditions on the immersed boundary is related to the error in splitting the implicit scheme. This
possibility is eliminated by using colored SCGS (which has no splitting error) as the solver, instead
of the fractional step method.

un+1 − un

�t
=−∇ pn+1 + �

(
1

Re
∇2ũ − (̃u · ∇ũ)

)
+Un (19)

For the implicit time integration scheme, the force density is given by the following equation:

Fn+1 = LNB(̃uNB) + L IB(un+1
IB ) − un

�t
−
(

�

(
1

Re
∇2ũ − (̃u · ∇ũ)

)
+Un

)
(20)

However, unlike the explicit time integration scheme, there is no simple expression for the pseudo-
velocity as it is obtained from solving a coupled system of equations (Equation (13)); the equation
which replaces the momentum equation (Equation (4)) at immersed boundary points is given by
the following equation:

un+1 − (LNB(̃uNB) + L IB(un+1
IB ))

�t
= −∇ pn+1 + �

(
1

Re
∇2un+1 − (u · ∇u)n+1

)

− �

(
1

Re
∇2ũ − (̃u · ∇ũ)

)
(21)

4.2.3. Structure of equations. Note that Equation (18) (explicit time integration) and Equation
(21) (implicit time integration) have exactly the same terms evaluated at the n + 1 time step,
respectively, as Equation (3) or (4). Therefore, for the explicit scheme, the matrix for the resulting
system of discretized equations is the same as in Equation (7) with only the right-hand side
being different. As a result, the solution to Equation (18) along with the continuity equation will
guarantee a divergence-free velocity. For both the explicit and implicit schemes, the addition of the
force density has resulted only in a change in the source term (i.e. the term not at the n + 1 time
step) at each immersed boundary point. The problem with this approach is that the force density
is determined such that the pseudo-velocity at the immersed boundary points satisfies the desired
velocity at the immersed boundary. This approach is incorrect because the force density should be
chosen such that the velocity (not the pseudo-velocity) at the immersed boundary points satisfies
the desired velocity at the immersed boundary. As the difference between the pseudo-velocity and
the velocity is �t∇ pn+1 the use of the pseudo-velocity means that the pressure gradient at the
n+1 time step does not influence the force density. Also, since the difference between the pseudo-
velocity and the velocity is proportional to �t , the issue arises as to how the time step affects
the solution, including the possible undesirable dependence of a steady-state solution on the time
step. It is important to note that the ability to define the force density using the pseudo-velocity
is a feature not only of fractional step methods, but can also be applied to any method used to
solve Equation (3) or (4) and Equation (2). In the present work, this method of defining the force
density is referred to by the acronym ‘PV’ for ‘Pseudo Velocity’.
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5. TWO-DIMENSIONAL OBSTACLE

5.1. Grid dependence

The BI and PV methods are demonstrated on a two-dimensional obstacle with a single tube through
which the flow should pass. A schematic of the problem along with inflow and outflow boundary
conditions, the origin of the coordinate system and dimensions is given in Figure 4. All quantities
are non-dimensionalized by the tube diameter d and the average velocity through the tube u0, with
a Reynolds number of 106 based on d and u0. This high Reynolds number is chosen to avoid the
instability of the diffusive terms for the explicit time integration scheme. The initial conditions are
u = 1

15 , v = 0 on the boundaries and interior, and constant pressure in the interior. For all time steps,
a uniform profile of u = 1

15 at x =−10d is maintained, so that the non-dimensional mass flow is 1.

The tube extends from −d�x�d and −0.5d�y�0.5d . The spatially averaged mass flow within the
tube is determined by finding the mass flow in the x direction within −0.5d�y�0.5d at each xui
(xui is defined in Figure 1) for which −d�xui �d and averaging. The immersed boundary method
is used to model the no-slip surfaces of the obstacle indicated in Figure 4 by dashed lines, while
no slip wall boundaries (without the use of immersed boundaries) are applied at y = −7.5d and
y = 7.5d . A convective outflow boundary condition is applied for both the velocities at x = 30d .
Results are obtained on four different grids with dimensions of 41× 21, 81× 41, 161× 81 and
321× 161, denoted on plots as grids (1, 2, 3, 4). The grids are stretched in both dimensions, to
concentrate points near the origin (center of the tube). The time step on the 41× 21 grid is 0.05
for the explicit time integration scheme and 0.25 for the implicit Adams–Moulton time integration
scheme, resulting in maximum CFL numbers of ∼ 0.2, ∼ 0.1, respectively. The time step is halved
when the next finer grid in the sequence is used. The flow is advanced a total of 0.05 (explicit time
integration scheme) or 0.25 (implicit time integration scheme) non-dimensional units in time; this
results in twice as many discrete time steps on the next finest grid in the sequence. Therefore one,
two, four and eight time steps are taken on the 41× 21, 81× 41, 161× 81 and 321× 161 grids,
respectively. Due to the boundary conditions, all the mass flow should go through the opening in
the immersed boundary, if the boundary conditions on the immersed boundary are enforced.

The L∞ norms of the residuals for both the explicit and implicit schemes can be decreased at
each time step to machine zero for the PV method, while for the BI method they remain ∼ 1. As
reducing the residuals to machine zero at each time step is computationally expensive, the effect
of reducing the residuals to different levels at each time step for this particular problem is studied;
it is found that the results are independent of the residual if the L∞ norms of the residuals �10−4.

Figure 4. Schematic of a two-dimensional obstacle.
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d
d

Figure 5. Spatial (−d�x�d) average of mass flow through a tube as a function of grid size,
two-dimensional obstacle, Re= 106.

For the PV method, the L∞ norms are reduced to this level at each time step. However, for the
BI method, since the addition of the force density has resulted in an inconsistent set of equations,
the L∞ norm of the residuals cannot be reduced beyond ∼ 1. Figure 5 shows that the PV method
results in very low values of mass flow through the tube, which is not improved by reducing
the grid spacing. As global and local mass is conserved with the PV method, the mass that does
not pass through the tube goes through the immersed boundary (which should be impermeable);
therefore, the velocity boundary condition at the immersed boundary is poorly satisfied. The BI
method gives much better results which improve as the grid spacing is reduced, however, local
(and global) mass is not conserved.

5.2. Effect of time step

The satisfaction of the velocity boundary condition on the immersed boundary is greatly improved
by reducing the time step. This is shown by a simulation of the two-dimensional obstacle on the
41× 21 grid at a Reynolds number of 20, chosen so that a steady flow results from the combination
of Reynolds number, grid and finite differencing scheme. Since the solution is steady, the results
presented are of the steady-state solution. The time step is decreased progressively by a factor of
2 starting from �tmax = 0.08 (explicit time integration scheme) or �tmax = 0.5 (implicit Adams–
Moulton time integration scheme), while all other parameters remain the same. At these �tmax,
the maximum CFL numbers are ∼ 0.21, ∼ 1.35, respectively. Using the PV method, the mass flow
converges (Figure 6) to the correct value as the time step is decreased. However, for the explicit
time integration scheme, the mass flow does not asymptote until log2(�tmax/�t)�8, while for
the implicit time integration scheme it does not asymptote until log2(�tmax/�t)�10, meaning the
computational expense to obtain this solution is 28 or 210 times that required to obtain the solution
using �t =�tmax. This dependence of the steady-state solution on the time step is a consequence
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d
d

Figure 6. Spatial (−d�x�d) average of mass flow through a tube as a function of �t ,
two-dimensional obstacle, 41× 21 grid, Re= 20.

of the inability of the time step to drop out at steady state in Equations (18) and (21). Note that
the solution using the BI method is not affected by the time step.

6. SUGGESTED IMPROVED APPROACHES

6.1. Reducing �t only at immersed boundary points, PVR method

The numerical example in the preceding section shows that for the PV method, the boundary
conditions at the immersed boundary are better satisfied as the time step goes to zero. However,
two to three orders of magnitude reduction in the time step (and hence two to three orders of
magnitude increase in computational expense) is still required for acceptable results. What is
desired is a method that exhibits the same correct behavior as reducing the time step, but does not
incur the severe computational expense of reducing the time step. Examination of Equation (18)
shows that un does not appear but instead is approximated by LNB(unNB) + L IB(un+1

IB ). Therefore,
the time accuracy of Equation (18) is suspect and a modification of the terms arising from the
time derivative may be appropriate. A simple modification of Equation (18) or (21), which are
the replacements for the momentum equations at immersed boundary points, can be made by
reducing the time step in these equations (and in the equations that define the pseudo-velocity i.e.
Equation (12) or (13)) by a factor (�), without changing the time step in the momentum equations
at non-immersed boundary points. This modification will result in Equation (22) (explicit time
integration) and Equation (23) (implicit time integration). In the present work, this method of
reducing the time step at immersed boundary points is referred to by the acronym ‘PVR’ for
‘Pseudo-Velocity Reduced time step’.

un+1 − (LNB(unNB) + L IB(un+1
IB ))

�t/�
= LNB(!nNB) − ∇ pn+1 (22)
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un+1 − (LNB(̃uNB) + L IB(un+1
IB ))

�t/�
= −∇ pn+1 + �

(
1

Re
∇2un+1 − (u · ∇u)n+1

)

− �

(
1

Re
∇2ũ − (̃u · ∇ũ)

)
(23)

Note that the steady-state solution is not affected by changing the time step only in Equation (18)
or (21) vs changing the time step globally, since at steady state the left-hand side of Equation (3)
or (4) is zero. For unsteady problems, however, there will be a difference in the solution since the
immersed boundary points are advanced using smaller time steps than the non-immersed boundary
points. It may seem that time accuracy has been adversely affected by the use of two different
time steps. However, the proper viewpoint is that the equations at immersed boundary points are
intended to apply a boundary condition whose behavior in time is known a priori and not to solve
a time accurate evolution equation. Consider two solutions; one of which is obtained by reducing
the global time step by a factor �, the other by reducing by � the time step only in Equation (18),
which represents the momentum equation at immersed boundary points. After evolving for the
same temporal period, the solutions will differ, but they will do so only as a result of the difference
in the error involved in the temporal integration of Equation (3) or (4) using �t vs �t/�.

6.1.1. Force density. For the PV method, the force density added to the momentum equations
can be defined by either Equation (16) (explicit time integration) or Equation (20) (implicit time
integration). This is not the case for the PVR, however, the added force density can be determined
from the concept of the immersed boundary method. This force density Fn+1 can be found by
writing Equation (22) (explicit time integration) or Equation (23) (implicit time integration) with
the left hand the same as Equation (3) (explicit time integration) or Equation (4) (implicit time
integration), subtracting the equations and solving for Fn+1. For the PVR method, this results in
Equation (24) (explicit time integration) and Equation (25) (implicit time integration), which is the
force density that must be added to Equation (3) or (4) to change them to Equation (22) or (23).

Fn+1 =−!n + LNB(!nNB) + LNB(unNB) + L IB(un+1
IB ) − un+1

�t/�
+ un+1 − un

�t
(24)

Fn+1 =−
(

�

(∇2ũ
Re

−(̃u · ∇ũ)

)
+Un

)
+ LNB(̃uNB)+L IB(un+1

IB )−un+1

�t/�
+ un+1−un

�t
(25)

6.2. Constrained velocity method, CV method

The principle of the immersed boundary method is to add a force density to the momentum
equations to cause the velocity to reach specified values at the immersed boundary. Application of
this principle using the method of [5] results in Equation (11), which has the defect of causing the
discretized system of equations to become inconsistent. If the force density is defined using the
pseudo-velocity a consistent set of discretized equations results, but this approach is not correct
as it results in a force density that does not depend on the velocity at the discrete grid points,
but instead depends on the pseudo-velocity at the discrete grid points (the force density does,
however, depend on the velocity on the immersed boundary). What is desired is an algorithm that
combines the positive and drops the negative attributes of the above approaches. The ideal solution
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is to be as close as possible to the modified momentum equation obtained by defining the force
density using the velocity (Equation (11)), while retaining the divergence-free constraint. This can
be expressed by adding a small correction term �u to Equation (11) resulting in Equation (26)
and then minimizing �u in some norm, subject to the divergence-free constraint.

un+1 = LNB(un+1
NB ) + L IB(un+1

IB ) + �u (26)

As �u depends (because of the term LNB(un+1
NB )) on the velocity at non-immersed boundary points,

the minimization of this norm is coupled to the solution of the entire velocity field.

6.2.1. Relationship between pressure and Lagrange multipliers. Consider the pseudo-velocity ũ
defined by Equation (12) or (13) which is not divergence free, having been obtained by advancing
the momentum equations in time without invoking the divergence-free constraint and without using
the pressure at the current time step. To transform ũ into a divergence-free velocity un+1, a quantity
�u is added.

un+1 = ũ + �u (27)

A problem can now be defined where it is desired that un+1 be as close as possible to ũ subject to
the constraint that un+1 be divergence free. This can be accomplished by minimizing a norm of
�u subject to the constraint that ũ + �u is divergence free. Choosing the norm (i.e. the objective
function) as the sum of the squares of �u, by using Lagrange multipliers (the �’s) this constrained
problem can be converted to an unconstrained problem with a modified objective function defined
by the following equation:

G =
Nu∑

�u2i, j +
Nv∑

�v2i, j

+
Np∑

�i, j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

un+1
i, j︷ ︸︸ ︷

ũi, j+�ui, j −

⎛⎜⎜⎝
un+1
i−1, j︷ ︸︸ ︷

ũi−1, j+�ui−1, j

⎞⎟⎟⎠
�xui

+

vn+1
i, j︷ ︸︸ ︷

ṽi, j + �vi, j −

⎛⎜⎜⎝
vn+1
i, j−1︷ ︸︸ ︷

ṽi, j−1+�vi, j−1

⎞⎟⎟⎠
�yv

j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(28)

�xui , �yv
j are defined in Figure 1, and Nu, Nv, Np are the number of interior u, v, p points,

respectively.
Differentiating Equation (28) with respect to the �u’s, �v’s and �’s and setting the partial

derivatives to zero results in Equation (29). Note that the two-point stencil for the divergence is
the reason why each equation obtained by differentiating the modified objective function with
respect to the �u’s and �v’s contains two and only two �’s. Another way of viewing this is
to note that each �ui, j or �vi, j appears in two discrete divergence (i.e. constraint) equations,
therefore, differentiating G with respect to �ui, j will result in an equation containing �i, j and
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�i+1, j (with respect to �vi, j will result in an equation containing �i, j and �i, j+1). Also, note
that differentiating the modified objective function with respect to �i, j returns the (i, j)th discrete
divergence-free constraint.

�G
�(�ui, j )

= 2�ui, j − �i+1, j

�xui+1
+ �i, j

�xui
= 0

�G
�(�vi, j )

= 2�vi, j − �i, j+1

�yv
j+1

+ �i, j
�yv

j
= 0

�G
�(�i, j )

= �ui, j − �ui−1, j

�xui
+ �vi, j − �vi, j−1

�yv
j

+ ũi, j − ũi−1, j

�xui
+ ṽi, j − ṽi, j−1

�yv
j

= 0

(29)

Obtaining the solution of Equation (29) for �ui, j results in:

�ui, j = �i+1, j

2�xui+1
− �i, j

2�xui

Adding to the x component of the momentum equation results in:

un+1
i, j = ũi, j+

�ui, j︷ ︸︸ ︷
�i+1, j

2�xui+1
− �i, j

2�xui

If pressure is defined as pn+1 =−�/2�t , and �xui = �xui+1 = �xi (which will occur if the grid
spacing is constant), then the result is Equation (30), which, if the pressure gradient is discretized
using a two-point central difference stencil, is one component of the vector equation (Equation
(14)).

un+1
i, j = ũi, j−

�ui, j︷ ︸︸ ︷
�t

(
pn+1
i+1, j

�xi
− pn+1

i, j

�xi

)
(30)

This shows that on a grid with constant spacing, there is a linear relationship between the discrete
pressure and the Lagrange multipliers.

6.2.2. Constrained velocity and immersed boundaries. The relationship between pressure and the
Lagrange multipliers suggests that the minimization of �u in Equation (26) at immersed boundary
points can be combined with that of �u in Equation (27) at non-immersed boundary points. This
may be done by defining the velocity at each non-immersed boundary point by Equation (27) and
at each immersed boundary point by Equation (26), and minimizing the sum of the squares of �u,
subject to the constraint that ∇ ·un+1 = 0. As before, Lagrange multipliers can be used to turn the
problem into an unconstrained optimization problem. However, the modified objective function
(Equation (31)) has a different structure than the modified objective function without immersed
boundaries (Equation (28)), as a component of �u may (because of LNB) appear in more than
two constraint equations. To make the problem more tractable, the operator LNB() + L IB(un+1

IB )

is assumed to contain only non-immersed boundary points; therefore, points with the subscript
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Figure 7. An example of a point that may be in another immersed boundary point’s stencil.

NB are non-immersed boundary points. In Figure 7, for example, ui, j , which is in the stencil
for ui, j−1, cannot itself be an immersed boundary point, as may occur if the immersed boundary
includes the dotted line:

G =
Nu∑

�u2i, j +
Nv∑

�v2i, j

+
Np∑

�i, j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

un+1
i, j︷ ︸︸ ︷

ũi, j+�ui, j −

⎛⎜⎜⎝
un+1
i−1, j︷ ︸︸ ︷

ũi−1, j+�ui−1, j

⎞⎟⎟⎠
�xui

+

vn+1
i, j︷ ︸︸ ︷

ṽi, j + �vi, j −

⎛⎜⎜⎝
vn+1
i, j−1︷ ︸︸ ︷

ṽi, j−1+�vi, j−1

⎞⎟⎟⎠
�yv

j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

where if ui, j (vi, j ) is an immersed boundary point ũi, j (̃vi, j ) is replaced with

LNB

⎛⎜⎜⎝
un+1
NB︷ ︸︸ ︷

ũNB + �uNB

⎞⎟⎟⎠
i, j

+ L IB(un+1
IB )i, j

⎛⎜⎜⎝LNB

⎛⎜⎜⎝
vn+1
NB︷ ︸︸ ︷

ṽNB + �vNB

⎞⎟⎟⎠
i, j

+ L IB(vn+1
IB )i, j

⎞⎟⎟⎠
using Equation (26) and un+1

NB = ũNB + �uNB.
�xui , �yv

j are defined in Figure 1, Nu, Nv, Np are the number of interior u, v, p points, respec-
tively. These interior points are points inside the computational domain, i.e. points not lying on
wall boundaries.
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Figure 8. The point that is in an immersed boundary stencil but is not an immersed boundary point.

The equations that minimize the modified objective function (Equation (31)) are given by the
following equation:

�G
�(�ui, j )

= 2�ui, j − �i+1, j

�xui+1
+ �i, j

�xui
+ Hi, j = 0

�G
�(�vi, j )

= 2�vi, j − �i, j+1

�yv
j+1

+ �i, j
�yv

j
+ Ii, j = 0

�G
�(�i, j )

= �ui, j − �ui−1, j

�xui
+ �vi, j − �vi, j−1

�yv
j

+ ũi, j − ũi−1, j

�xui
+ ṽi, j − ṽi, j−1

�yv
j

= 0

(32)

where if ui, j (vi, j ) is an immersed boundary point ũi, j (̃vi, j ) is replaced with

LNB

⎛⎜⎜⎝
un+1
NB︷ ︸︸ ︷

ũNB + �uNB

⎞⎟⎟⎠
i, j

+ L IB(un+1
IB )i, j

⎛⎜⎜⎝LNB

⎛⎜⎜⎝
vn+1
NB︷ ︸︸ ︷

ṽNB + �vNB

⎞⎟⎟⎠
i, j

+ L IB(vn+1
IB )i, j

⎞⎟⎟⎠
using Equation (26) and un+1

NB = ũNB + �uNB.
For non-immersed boundary points appearing in an immersed boundary interpolation operator,

the partial derivative of the modified objective function with respect to the �ui, j or �vi, j at
those points will contain additional terms (Hi, j , Ii, j ) which cause the partial derivative to contain
more than the two ‘basic’ Lagrange multipliers that appear if the problem contains no immersed
boundary. For example, in Figure 8, if �ui, j (at a non-immersed boundary point) appears in a
linear interpolation stencil, then the part of the modified objective function G that contains �ui, j
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will be the following equation (where a and b are the weights of the interpolation operator):

G= �u2i, j + �i, j

⎛⎜⎜⎜⎜⎝
un+1
i, j︷ ︸︸ ︷

ũi, j + �ui, j −
un+1
i−1, j︷ ︸︸ ︷

(̃ui−1, j + �ui−1, j )

�xui

⎞⎟⎟⎟⎟⎠

+ �i+1, j

⎛⎜⎜⎜⎜⎝
un+1
i+1, j︷ ︸︸ ︷

ũi+1, j + �ui+1, j −
un+1
i, j︷ ︸︸ ︷

(̃ui, j + �ui, j )

�xui+1

⎞⎟⎟⎟⎟⎠+ Hi, j

Hi, j = �i, j−1

⎛⎜⎜⎜⎜⎜⎝
un+1
i, j−1︷ ︸︸ ︷

a(̃ui, j + �ui, j ) + bun+1
IB −

un+1
i−1, j−1︷ ︸︸ ︷

(̃ui−1, j−1 + �ui−1, j−1)

�xui

⎞⎟⎟⎟⎟⎟⎠

+ �i+1, j−1

⎛⎜⎜⎜⎜⎜⎝
un+1
i+1, j−1︷ ︸︸ ︷

ũi+1, j−1 + �ui+1, j−1 −
un+1
i, j−1︷ ︸︸ ︷

(a(̃ui, j + �ui, j ) + bun+1
IB )

�xui+1

⎞⎟⎟⎟⎟⎟⎠

(33)

where for clarity G is just the parts of Equation (31), which contain �ui, j .
Since un+1

i, j−1 is an immersed boundary point, it is determined from the immersed boundary stencil

un+1
i, j−1 = aun+1

i, j + buIB +�ui, j−1; as u
n+1
i, j = ũi, j +�ui, j , the immersed boundary stencil becomes

un+1
i, j−1 = a(̃ui, j + �ui, j ) + buIB + �ui, j−1. Therefore, the two discrete divergence (i.e. constraint)

equations containing un+1
i, j−1 will also contain �ui, j , and when Equation (33) is differentiated with

respect to �ui, j , the Lagrange multipliers �i, j−1 and �i+1, j−1 will appear:

�G
�(�ui, j )

= 2�ui, j − �i+1, j

�xui+1
+ �i, j

�xui
+

Hi, j =
�Hi, j

�(�ui, j )︷ ︸︸ ︷(
−a

�i+1, j−1

�xui+1
+ a

�i, j−1

�xui

)
(34)

These Lagrange multipliers �i, j−1 and �i+1, j−1 are in addition to the ‘basic’ Lagrange multipliers
�i+1, j , �i, j . Clearly, depending on the geometry and the immersed boundary stencil many other
combinations are possible, i.e. a �ui, j or �vi, j may appear in many discrete divergence (i.e.
constraint) equations. In general, when Equation (31) is differentiated with respect to a specific
�ui, j or �vi, j , a distinct Lagrange multiplier will appear for each associated discrete divergence
equation that contains that specific �ui, j or �vi, j . Because of the assumption that immersed
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boundary points do not appear in stencils for other immersed boundary points, at immersed
boundary points (Hi, j ,Ii, j ) in Equation (32) are zero.

The importance of the immersed boundary conditions can be increased by minimizing �u at
immersed boundary points relative to �u at non-immersed boundary points. This can be done
by weighting (by a factor �>1) �u at immersed boundary points in the objective function; this
changes Equation (32) into Equation (35) (the constraint equation is unchanged). The norm (i.e.
objective function) that is now minimized (subject to the divergence-free constraint) is the sum of
the squares of �u where the square of �u is weighted by a factor �>1, if �u is at an immersed
boundary point. If the weighting is not done, then the solution of Equation (32) suffers the same
problem of not satisfying the boundary conditions at the immersed boundary as do solutions to
Equations (2) and (3) (non-immersed boundary points) and Equation (18) (immersed boundary
points) for explicit time integration or Equations (2) and (4) (non-immersed boundary points) and
Equation (21) (immersed boundary points) for implicit time integration.

�G
�(�ui, j )

= 2��ui, j − �i+1, j

�xui+1
+ �i, j

�xui
+ Hi, j = 0

�G
�(�vi, j )

= 2��vi, j − �i, j+1

�yv
j+1

+ �i, j
�yv

j
+ Ii, j = 0

(35)

where ��1 if ui, j or vi, j is an immersed boundary point, �= 1 otherwise where if ui, j (vi, j ) is
an immersed boundary point, Hi, j (Ii, j ) = 0.

�G
�(�i, j )

= �ui, j − �ui−1, j

�xui
+ �vi, j − �vi, j−1

�yv
j

+ ũi, j − ũi−1, j

�xui
+ ṽi, j − ṽi, j−1

�yv
j

= 0

where if ui, j (vi, j ) is an immersed boundary point ũi, j (̃vi, j ) is replaced with

LNB

⎛⎜⎜⎝
un+1
NB︷ ︸︸ ︷

ũNB + �uNB

⎞⎟⎟⎠
i, j

+ L IB(un+1
IB )i, j

⎛⎜⎜⎝LNB

⎛⎜⎜⎝
vn+1
NB︷ ︸︸ ︷

ṽNB + �vNB

⎞⎟⎟⎠
i, j

+ L IB(vn+1
IB )i, j

⎞⎟⎟⎠
using Equation (26) and un+1

NB = ũNB + �uNB.
The authors have found that the solution of Equation (35) with �>1 improves the satisfaction of

the boundary conditions at the immersed boundary. However, there has been found to be a rather
low limit ∼ 10 on the magnitude of �, above which the solution does not converge. The reason
for this can be seen by considering Equations (37) and (36) which are obtained by substituting
for �ui, j (as found from Equation (35)) in Equation (27) or (26) for non-immersed boundary and
immersed boundary points, respectively:

2(un+1
i, j − ũi, j ) = �i+1, j

�xui+1
− �i, j

�xui
+ Hi, j (36)

2�(un+1
i, j − (LNB(un+1

NB )i, j + L IB(un+1
IB )i, j ))= �i+1, j

�xui+1
− �i, j

�xui
(37)

Assume that as �→ ∞, the velocity converges and becomes independent of �. Therefore, as
un+1
i, j − (LNB(un+1

NB )i, j + L IB(un+1
IB )i, j ) = constant (since the velocity converges), we conclude that
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the magnitude of the right-hand side must increase as �; therefore, either �i+1, j or �i, j must
increase as �. As a result, if solving Equation (36) at a non-immersed boundary point near an
immersed boundary, Equation (36) may, due to Hi, j , contain a � which increases as �. Therefore,
as the left-hand side of Equation (36) does not contain a � the velocity must increase as the
� appearing in Hi, j increases. This problem can be avoided by dropping the additional terms
(Hi, j ,Ii, j ) in Equation (35).

As in the previous section, it is desired to use the transformation pn+1 = −�/2�t to recover
Equations (5) and (6), however, if the grid is not even, then 1/�xui+1 − 1/�xui �= 0 and the
resulting gradient approximation of pn+1 is not 0th order accurate. Therefore, the substitution
pn+1 =−�/2�t cannot be made. In order to recover Equations (5) and (6), the weights for � are
replaced with the ones for pressure in Equation (6), after the substitution pn+1 = −�/2�t the result
is the following equation:

un+1 − (LNB(un+1
NB ) + L IB(un+1

IB ))

�t/�
= −∇ pn+1 (38)

The assumption that no immersed boundary points appear in the interpolation stencil for other
immersed boundary points is removed; for the stencil and geometries used in the present work, this
situation occurs very rarely if at all. These changes have modified the solution of the minimization
problem, as has the dropping of the additional terms (Hi, j ,Ii, j ) in Equation (35), but it will be shown
by numerical examples that the result is a numerical method that is an improvement over the other
methods evaluated. This method involves the solution of Equation (3) (explicit time integration)
or Equation (4) (implicit time integration) at non-immersed boundary points, and the solution of
Equation (38) at immersed boundary points, along with the solution of the discretized continuity
equation (Equation (5)). In the present work, this method is referred to by the acronym ‘CV’ from
‘constrained velocity’. Note that for the implicit scheme, the error involved in the splitting of the
momentum equations (see Equation (19)) is avoided by solving Equation (4) instead of Equation
(19) at non-immersed boundary points. Also, note that the time integration scheme plays no role
in the derivation of Equation (38); this equation can be used with both the explicit and implicit
time integration schemes. By comparing Equation (26) with Equation (38), the correction term �u
is shown to be given by �u=−(�t/�)∇ pn+1.

A comparison of Equations (38) and (22) shows that decreasing the time step at immersed
boundary points is closely related to increasing the weighting factor of the square of �u in the
objective function if �u is at an immersed boundary point (i.e. penalizing changes from the
interpolation stencil, Equation (11)). Solving Equations (38) and (22) for un+1 and subtracting
results in:

from Equation (38)︷︸︸︷
un+1 −

from Equation (22)︷︸︸︷
un+1 = LNB(un+1

NB ) −
(

�t (LNB(!nNB))

�
+ LNB(unNB)

)
As �→ ∞, this reduces to the following equation:

from Equation (38)︷︸︸︷
un+1 −

from Equation (22)︷︸︸︷
un+1 = LNB(un+1

NB ) − LNB(unNB) (39)

This shows that for large values of � the two methods (Equations (38) and (22)) are expected
to give the same results for steady-state problems. However, if the problem is unsteady, the two
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methods differ. As an example, consider a two-dimensional domain, with periodic boundaries
in both directions. In it place an immersed boundary of an x = constant line across the entire
domain. The initial conditions are u = 2� f sin(2� f t0), v = 0, p= constant, while the immersed
boundary moves with a prescribed motion of cos(2� f t). The solution to this problem for all time
is u = 2� f sin(2� f t), v = 0, p= constant. This exact solution will be recovered by Equations
(38) and (11), but not by Equations (22) and (23) as the left-hand side of these equations will be
non-zero, and therefore ∇ pn+1 will be non-zero. Note that in both the PVR and CV methods, the
introduction of the time step reduction or weighting factor � will change the spectral radius of
A in Equation (7). If an iterative method is used to solve Equation (7), this may have an adverse
effect on the convergence rate. A preconditioning matrix is a possible remedy but has not been
explored in the present work.

6.2.3. Force density. Similarly as for the PVR method, the force density in the CV method is
given by Equation (40) (explicit time integration) and Equation (41) (implicit time integration):

Fn+1 =−!n + (LNB(un+1
NB ) + L IB(un+1

IB )) − un+1

�t/�
+ un+1 − un

�t
(40)

Fn+1 = −�

(∇2un+1

Re
+(u · ∇u)n+1

)
−Un+ LNB(un+1

NB )+L IB(un+1
IB )−un+1

�t/�
+un+1−un

�t
(41)

7. COMPUTATION AND BEHAVIOR OF FORCE DENSITY

The concept of the immersed boundary method is that the stress which the surface of an immersed
boundary exerts on a fluid is transformed into a force density which is then added to the Navier–
Stokes equations to represent the presence of the immersed boundary. The integral of this stress
(denoted f n+1) over the surface (S) of the immersed boundary yields the force of the immersed
boundary on the fluid and should equal the integral of the force density over the entire volume
(V ) of fluid:∫

S
f n+1 dS =

∫
V
Fn+1 dV = total force of immersed boundary on fluid (42)

If the volume in which the force density is added decreases, Equation (42) implies that the force
density must increase at the same rate for the total force of the immersed boundary on the fluid
to remain constant. With the criteria used to select immersed boundary points at which the force
density is added, as the grid spacing �x decreases, the volume in which the force density is added
decreases as �x2 (two dimensions) and �x3 (three dimensions). Therefore, the force density
increases as �x−2 (two dimensions) and �x−3 (three dimensions) as the grid spacing decreases
and is not bounded. However, as the product of the force density and the discrete volume goes
to a constant, this suggests that the local stress on the surface of the immersed boundary may be
obtained from the force density.

7.1. Computation of force density

The modeling of objects in a fluid by the addition of a force density to the momentum equations
to represent the force of the objects on the fluid can be useful if the force of the objects on the
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fluid or work done by the objects on the fluid is of interest. Once the force density is known, the
force of the immersed boundary on the fluid can be computed by summing up the product of the
force densities with the volumes of the respective cells of the immersed boundary points at which
the force density is added (in Figure 1, the volume of the cell for the i, j th x momentum equation
is �xi�yv

j ). The method of computing the force density (Equations (24)–(41)) is termed the 1st
method in the present work. Note that the force density can also be defined using Equation (8)
(explicit time integration) or the equivalent for implicit time integration, however, the form given
by Equations (24)–(41) is useful to show the explicit dependence of the force density on various
quantities.

In the context of an iterative method, the above definitions of the force density are not necessarily
correct. In any iterative method, the change in the velocity and pressure at each iteration is found
from B�q=−R, where B is the matrix defining the iterative method, �q is the change in the
velocity and pressure and R the residual. Matrix B and residual R take into account the changes
in the momentum equations at immersed boundary points which define the PV, PVR and CV
methods. To find the force density that is added, the change in velocity and pressure obtained from
the iterative method with a matrix A and a residual R∗ (both unmodified by the PV, PVR or CV
methods) and with the added force density term, must be equated with the change in the velocity
and pressure obtained from the iterative method using the PV, PVR or CV methods:

�q=−B−1R=−A−1(R∗ − Fn+1)

Solving for the force density Fn+1 yields the following equation and is termed the 2nd method in
the present work:

Fn+1 =R∗ − AB−1R (43)

Note that the force density in Equation (43) depends on the residual (R) of the equations being
solved; this dependence is a key to a correct computation of the force density. Figure 9 (from
the vibrating structure problem discussed later) shows the volume integral of the x component of
force density over all immersed boundary points using the 1st and 2nd methods for computing
the force density at different residual levels. The 2nd method is seen to be well behaved even
with very high levels of residual, while the 1st method results in unbounded behavior as log2(�)

increases. The 1st method behaves better as the residual (R in Equation (43)) decreases. As R goes
to zero, the force density becomes equal to that defined by the immersed boundary concept (i.e.
Equation (8) or equivalently Equations (24)–(41)) and the 1st and 2nd methods give identical force
densities. The dependence of the 1st method on log2(�) results from the definition of the residual
of the momentum equations. Using the CV method as an example, the residual (R in Equation
(43)) used by the iterative method is defined by R = ��t−1(un+1 − (LNB(un+1

NB ) + L IB(un+1
IB ))) +

∇ pn+1 while the residual monitored (and used to distinguish the lines in Figure 9) is defined by
(un+1 − (LNB(un+1

NB ) + L IB(un+1
IB ))) + �−1�t∇ pn+1. This difference in the residual definition is

because as � → ∞, un+1 − (LNB(un+1
NB ) + L IB(un+1

IB ))→ constant and ∇ pn+1 → ∞ and the
residual becomes large. Scaling the residual by �−1�t has been found to result in a good measure
of convergence for the iterative method, the residual used in the iterative solver (R in Equation
(43)) is of course unscaled.

Note that to compute the force density using Equation (43), B must not be rank deficient.
However, as shown in Section 3.4, for the BI method the global matrix may be rank deficient,
which leaves open the possibility of B being rank deficient. Matrix B will indeed be rank deficient
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Figure 9. A comparison of the 1st and 2nd methods of computing force, implicit time
integration, vibrating structure, 74× 38 grid.

if all four velocities surrounding a main (pressure) grid point are immersed boundary points (i.e.
the four velocities, ui−1, j , ui, j , vi, j−1, vi, j surrounding pi, j in Figure 2). The rank deficiency arises
because all the terms describing the influence of pi, j are zero.

7.2. Behavior of force density as �t → 0 or � →∞
Equations (24)–(41) contain a term of the form �(LNB() + L IB(un+1

IB ) − un+1/�t) and, therefore,
the force density will not be bounded as �t → 0 or �→ ∞. This behavior is shown in Figure 10
for both the explicit and implicit schemes. However, in the present work, it has been found that if
the 2nd method is used to compute the force density, then the volume integral of the force density
over the fluid (i.e. the total force of the immersed boundary on the fluid) is bounded and converges
as �t → 0 or �→ ∞ regardless of the residual remaining upon termination of the iterative process
(if the 1st method is used, this will be true if the residual is reduced to machine zero). The
convergence of this volume integral of the force density is to be expected for the existence of
bounded solutions, however, there is no such restriction on the force density at each immersed
boundary point. The specific unbounded behavior of the force density at each immersed boundary
point is that it approaches a linear relation to 1/�t as �t → 0 or to � as � → ∞. The result of
this unbounded behavior is that the force density cannot be used to compute the local stress on
the immersed boundary and, therefore, deformations of the immersed boundary, but can be used
to compute the entire force acting on the immersed boundary as a rigid body.

8. NUMERICAL EXAMPLES

8.1. Vibrating structure

A test problem consisting of a two-dimensional structure constructed using infinitely thin
walls, one of which vibrates, is used to evaluate the behavior of the methods on unsteady
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Figure 10. L∞ norm of the x component of force density, two-dimensional
obstacle, Re= 106, 161× 81 grid.

Figure 11. Vibrating structure schematic, contours are of velocity magnitude.

problems. The x coordinate of the vertical wall in Figure 11 moves with a motion of
x(�t (n − 1))= (�tM/2�) sin(2��t (n − 1)/�tM) (where n is the time index), the other two
walls are rigid with no-slip velocity boundary conditions; the immersed boundary method is used
to model all three walls. No-slip velocity boundary conditions are applied on all four sides of the
computational grid. The parameter M is the number of time steps per cycle; as M increases the
vibration frequency decreases. Beginning with a quiescent fluid, the simulation is run for 2M time
steps. From a test of the effect of the residual level, it was determined that the L∞ norm of the
divergence has to be reduced to 1× 10−3; therefore, it was reduced to this level at each time step
for all methods (except the BI method, for which this is not possible). To make a fair comparison,
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(a) (b)

Figure 12. Effect of �, vibrating structure, CV method, explicit time integration, M = 8, even grid:
(a) mass flow and (b) correction term.

however, the BI method uses the same number of iterations of the solver at each time step as
required by the CV method to reduce the L∞ norms of the residuals �1× 10−3. The problem
is non-dimensionalized with the maximum velocity of the vibrating vertical wall and the wall’s
height; the Reynolds number being 20 000 based on these quantities. Results are obtained on five
grids with dimensions 37× 19, 73× 37, 145× 73, 289× 145, 577× 289 (numbered on plots as
grids 1, 2, 3, 4, 5, respectively). The time step is (0.05, 0.3)/2(k−1) (where k is the grid number)
for the explicit time integration scheme and the implicit Adams–Moulton time integration scheme,
respectively. Results are obtained for each set of grid dimensions on both even and stretched grids;
on the stretched grid stretching is done to reduce the grid spacing near the immersed boundaries.
The time step is reduced by half when moving from one grid to the next finest grid; this doubles the
frequency while keeping the number of time steps per cycle constant. The exact mass flow between
the two rigid walls for this problem is given by cos(2��t (n − 1)/�tM) and is used to define the
error of the methods. The error is collapsed in space and time by determining the root mean square
over −2�x�2 and averaging over all time steps. The effect of �, which is the weighting factor in
the CV method and the local reduction in time step in the PVR method, on the solution is shown
in Figure 12. When plotted against log2(�), the error in the mass flow has the same shape on
the first three grids (due to computational expense, the 289× 145 and 577× 289 grids were not
used in this part of the study). A solution independent of � occurs by log2(�) ≈ 13 on all three
grids for both the explicit and implicit time integration schemes. Figure 12(a) also shows that as
� increases the boundary conditions are better satisfied until they asymptote at log2(�) ≈ 13. If
so, the L2 (not necessarily the L∞) norm of the correction term (�u= −(�t/�)∇ p) at immersed
boundary points should decay to a constant (at the same value of log2(�)) as � increases and
indeed this behavior is shown in Figure 12(b). Results are only shown for the explicit CV method
as the implicit and the PVR method (explicit and implicit) behave similarly.

The value (213) at which � asymptotes (as in Figure 12) is then used in the PVR and CV methods
to compare them with the BI method. Figure 13 shows that on an even grid the CV method has
the lowest error for both the explicit and implicit schemes. The error of the CV method decays
to zero as the grid spacing decreases while that of the other methods does not. The BI method
has less error than the PV and PVR methods, particularly for the implicit scheme, although still
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(a) (b)

Figure 13. Spatial and temporal average of mass flow error, vibrating structure, M = 8: (a) explicit
convection–diffusion and (b) implicit convection–diffusion.

significantly more error than the CV method. The reason why the error in the PVR method does
not decay to zero as the grid spacing is reduced can be seen in Figure 14(a) and (b), where a large
lagging phase error in the mass flow is evident for the PVR method. The mass flow in Figure
14(a) and (b) is the mass flow in the x direction at x = 0 and −0.5�y�0.5. This phase error is a
result of the force density (and, therefore, the boundary condition at the immersed boundary) not
depending on the velocity on the Cartesian grid at the current (n + 1) time step. Figure 14(c) and
(d) shows that the force density of the PVR method lags that of the CV method with the same
phase error as the mass flow (the force density in Figure 14(c) and (d) is the x component of the
force density representing the entire immersed boundary, not just the force density representing
the vibrating part). The PV method is seen to give very poor results for the mass flow, as on top of
the phase error, there is a large amplitude error. This large amplitude error is particularly evident
in the force density. The force density of the BI method is not shown since, as mentioned in
Section 7.1, matrix B in Equation (43) is rank deficient. While not shown, the further away from
the origin (x = 0, around which the center part vibrates) that the mass flow is computed for the PV
method, the greater the amplitude error in the mass flow. As global mass is conserved with the PV
method, the lost mass, represented by the amplitude error, leaks through the two rigid walls. Figure
14(a) indicates very little errors in the BI method which appears to conflict with the large error
for the method shown in Figure 13. This is because the error in Figure 13 is averaged spatially
over −2�x�2 while Figure 14(a) is plotted at x = 0; when the mass flow is plotted further away
from x = 0, a significant phase error appears in the results from the BI method. A stretched grid,
which concentrated points near the origin, was also used to obtain solutions for all the methods.
The results are almost identical to those obtained using the even grid, which validates the change
of the weights for � in Equation (35) to those used for the pressure gradient.

8.2. Two-dimensional obstacle

The two-dimensional obstacle problem of Section 5 is revisited using the two new methods.
The effect of the weighting factor � on the boundary conditions (specifically the mass flow) at
the immersed boundary is dramatically seen in Figure 15(a) for the CV method for both the
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(a) (b)

(d)(c)

Figure 14. Mass flow at x = 0 and total force density as a function of time, vibrating structure, M = 8, even
577× 289 grid: (a) mass flow explicit convection–diffusion; (b) mass flow implicit convection–diffusion;

(c) force density explicit convection–diffusion; and (d) force density implicit convection–diffusion.

explicit and implicit time integration schemes. The explicit and implicit schemes behave the same
for both the PVR and CV methods, however, the CV method asymptotes faster than the PVR
method. This drastic improvement in the satisfaction of the boundary conditions at the immersed
boundary, indicated by convergence toward the correct mass flow through the opening as � is
increased, suggests that the correction term (�u= −(�t/�)∇ p) which is added to Equation (26)
is minimized in some sense as � is increased. This is seen in Figure 15(b) in which the L2 norm
of the correction term becomes smaller as � is increased. The reason for the dip in the curves in
Figure 15(b), in which the minimum of the correction term does not coincide with the asymptotic
improvement in the boundary conditions at the immersed boundary in Figure 15(a), may be due to
the simplifications (the dropping of the additional terms (Hi, j ,Ii, j ) in Equation (35), the change in
the weights of the Lagrange multipliers, the assumption that no immersed boundary points appear
in interpolation stencils for other immersed boundary points) made in the process of solving the
minimization problem given by Equation (32).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1845–1884
DOI: 10.1002/fld



DIVERGENCE-FREE INTERPOLATION SCHEME 1875

(a) (b)

Figure 15. Effect of �, two-dimensional obstacle, Re= 106, 161× 81 grid:
(a) mass flow and (b) correction term.

Figure 16. Two-dimensional obstacle, Re= 106, explicit convection–diffusion time integration.

Choosing a value for � for the PVR and CV methods at which the solution asymptotes
(see Figure 15), the methods are applied to the problem using the same four grids described in
Section 5.1. Figure 16 shows that for the explicit time integration scheme (the implicit scheme
behaves almost identically) the PVR and CV methods converge toward the correct mass flow of
one, performing better on all grids than the BI method. The reason for the poorer results of the
PVR method compared with the CV method on the coarser grids is the independence of the force
density in the PVR method from the velocity at the current time step. On the coarsest grid, on
which one time step is taken, the force density at the final time step in the PVR method depends
on the velocity at the previous time step (i.e. the initial conditions). On the next finest grid, on
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which two time steps are taken (the same length of time is simulated on each grid), the force
density at the final time step in the PVR method does not depend on the initial conditions, but
instead depends on the velocity at the previous time step which is expected to be closer to the
velocity at the final time step than the velocity at the previous time step is for the coarsest grid.

8.3. Cylinder in crossflow

A commonly used flow for validation purposes is flow over a cylinder. For this reason, the methods
are applied to steady laminar flow over a circular cylinder at a Reynolds number of 40 (based
on the diameter and crossflow velocity). The computational domain in the x direction extends
20d upstream and 80d downstream of the cylinder while the boundaries in the y direction ex-
tend 35d above and below the cylinder. At this Reynolds number, the flow is two-dimensional
and, therefore, the z direction is not resolved. Dirichlet boundary conditions for the velocity
are used at x =−20d and at y = ± 35d; a convective outflow boundary condition is used at
x = 80d . Using the implicit time integration scheme, results are obtained on six grids with di-
mensions 63× 45, 125× 89, 249× 177, 497× 353, 993× 705, 1985× 1409 (denoted on plots as
grids 1, 2, 3, 4, 5, 6, respectively). These grids are subsets of each other with every point on a
grid contained in its next finest grid; every grid’s next coarsest is determined by removing ev-
ery other grid point in each direction. The grids are stretched in both directions to concentrate
grid points near the cylinder. Using the fully implicit time integration scheme with a time step of
(0.24)/2(k−1) (where k is the grid number), the solution is advanced 3840 units of non-dimensional
time toward steady state while keeping the L∞ norm of the residual less than 10−1 at each time
step. Upon termination of the time integration, the L∞ norm of the residual is less than 2× 10−4

and the steady-state solution has been obtained. A value for � of 256 is used with the PVR
and CV methods. A metric to quantify the results of the different methods is the mass flow in
the x direction across the centerline of the cylinder (at x = 0); as the cylinder is a closed sur-
face this mass flow should be zero. Figure 17(a) shows that using the PVR and CV methods,
this mass flow approaches zero as the grid spacing is reduced, while using the PV method the
mass flow asymptotes to a constant value of ∼ 0.3. As global mass is conserved, this mass flow
must exit the cylinder. As it exits the cylinder it changes the wake, causing flow separation to

(a) (b)

Figure 17. A cylinder in crossflow, Re= 40: (a) mass flow in the x direction through the center
of cylinder and (b) the drag coefficient.
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Table I. Drag coefficient, a cylinder in crossflow, Re= 40.

PV PVR CV [15] [25] [24]
Cd 1.65 1.54 1.54 1.51 1.55 1.5

Figure 18. Schematic of a cylinder in a channel, the CV method, 2433× 161 grid, every 16th vector shown,
contours are of velocity magnitude.

occur earlier which increases the drag coefficient of the PV method vs the CV method (the PVR
method behaves almost identical to the CV method, as is predicted by Equation (39)). The drag
coefficient (obtained using the 2nd method) converges as the grid spacing is reduced, and on the
sixth grid the drag coefficient can be considered to be grid independent, although there is a slight
(0.9%) difference between the results on the fifth and sixth grid for the PV method. Table I shows
the drag coefficient of the three methods along with the results of previous works. The PVR and
CV methods predict values within the range found in the previous works. The PV method slightly
(7%) overpredicts the drag coefficient relative to the PVR and CV methods. For this flow, while
the PV method allows a significant flow leakage through the immersed boundary, it still predicts
the drag coefficient relatively well.

8.4. Cylinder in channel

The PV, PVR and CV methods are applied to a cylinder confined in a channel; a schematic,
dimensions and the coordinate system origin are shown in Figure 18. Dirichlet boundary conditions
of u = 1 − y2, v = 0 are used at x =−40d , u = 0, v = 0 at y = ± d and a convective outflow
boundary condition for both u and v is used at x = 40d . Solutions are obtained at Reynolds
numbers of 10, 20, 40 and 100 (based on the cylinder diameter and maximum inflow velocity). At
these Reynolds numbers, the flow is steady and two-dimensional and, therefore, the z direction is
not resolved. Using the fully implicit time integration scheme, results are obtained on five grids
with dimensions 153× 11, 305× 21, 609× 41, 1217× 81, 2433× 161 (denoted on plots as grids
1, 2, 3, 4, 5, respectively). The maximum difference over all three methods and Reynolds numbers
for the drag coefficient (obtained using the 2nd method) between the fourth and fifth grids is 0.7%
and, therefore, the solution obtained on the fifth grid is considered to be grid independent. Results
are compared with those obtained by [24], who used a body-fitted finite volume scheme to solve the
identical problem. Using a value for � of 256 (at which the solution becomes independent of �),
the drag coefficients obtained from the PVR and CV methods match very closely at all Reynolds
numbers those found by [24], while the PV method greatly underpredicts the drag coefficient,
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(a) (b)

Figure 19. A cylinder in a channel, 2433× 161 grid: (a) mass flow in the x direction through the center of
a cylinder and (b) the drag coefficient.

particularly at low Reynolds numbers (Figure 19(b)). The mass flow in the x direction through the
center of the cylinder at x = 0 is shown in Figure 19(a); if the boundary conditions at the immersed
boundary are enforced properly, this mass flow should be zero. The PVR and CV methods have
essentially zero mass flow, while the PV method has very high values, particularly at low Reynolds
numbers.

9. SPATIAL ORDER OF ACCURACY

In general, any numerical approximation based on polynomial expansions will, if the solution has
no discontinuities and with constant grid spacing (�x) the same in each spatial direction, contain
truncation error terms of the form:

e(�x) = cn�x
n + cn+1�x

n+1 + · · · + c∞�x∞

where n is the spatial order of accuracy of the scheme and cn , cn+1 + · · · + c∞ are functions of
partial derivatives. If it is assumed that the error is dominated by the leading-order error terms of
power n (i.e. cn�xn), there are two methods which can be used to determine the approximate value
of n. In the following, Q is the exact solution, q(�x) the approximate solution obtained on a grid
with grid spacing of �x , � a parameter that controls the relative grid spacing between the different
grids on which solutions are obtained and ‖‖ indicates either the L1, L2 or L∞ norms. The L1
norm of a vector � is defined as

∑|�|/size[�], the L2 norm is defined as (
∑

(�2/size[�]))1/2.

9.1. Method 1

In this method, the exact solution, if not known, is approximated by the solution (Qfinest) ob-
tained on the finest grid. Using solutions obtained on two different (coarser) grids, an expression
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(Equation (44)) for the order of accuracy can be obtained:

‖e(�x)‖
‖e(��x)‖ = ‖q(�x) − Qfinest‖

‖q(��x) − Qfinest‖ = ‖cn(�x)n‖
‖cn(��x)n‖ = 1

�n
→ n = log�

(‖q(��x) − Qfinest‖
‖q(�x) − Qfinest‖

)
(44)

As higher-order terms are neglected in obtaining Equation (44) and the exact solution is approxi-
mated by the solution obtained on the finest grid (Qfinest), the order of accuracy determined will
not be exact.

9.2. Method 2

The previous method is appropriate if the exact solution is not known or is well approximated
by the solution obtained on the finest grid, if this is not the case then there is another method,
requiring solutions on three different grids, in which the exact solution cancels out:

‖q(��x) − q(�x)‖
‖q(���x) − q(��x)‖ = ‖Q + cn(��x)n − (Q + cn(�x)n)‖

‖Q + cn(���x)n − (Q + cn(��x)n)‖ = �n − 1

(��)n − �n

Simplifying

− ‖q(��x) − q(�x)‖
‖q(���x) − q(��x)‖�n�n +

(
1 + ‖q(��x) − q(�x)‖

‖q(���x) − q(��x)‖
)

�n − 1= 0

The solution to this is �n = (1, ‖q(���x) − q(��x)‖/‖q(��x) − q(�x)‖). We reject the first
possibility because this would require a zeroth-order numerical scheme. Therefore, we conclude
that

n = log�

(‖q(���x) − q(��x)‖
‖q(��x) − q(�x)‖

)
(45)

9.3. Cylinder in driven cavity

To eliminate errors resulting from the temporal discretization, a two-dimensional steady-state
problem of a cylinder centered in a square-driven cavity is solved. No slip velocity boundary
conditions are applied on all four sides of the square cavity, with the exception of the top wall
which moves in the positive x direction with a velocity of 1; the immersed boundary method is used
to apply no slip velocity boundary conditions on the cylinder. The problem is non-dimensionalized
with the diameter (D) of the circular cylinder and the velocity of the moving top lid of the driven
cavity. The Reynolds number based on this non-dimensionalization is 20; the dimension of the
square cavity is 2D. Constant grid spacing, the same in both dimensions, is used and beginning
with the coarsest grid of 11× 11, the grid spacing is halved in turn on each of the five successive
finer grids. Using the fully implicit convection diffusion scheme, the equations are integrated for
150 non-dimensional units of time until the steady-state solution is reached. The time step used on
the coarsest (11× 11) grid is 0.1 and is halved in turn on each of the five successive finer grids.
A value of 256 is used for � for both the PVR and CV methods.

The order of accuracy of both components of velocity is found using Equations (44) and
(45) for each component of velocity separately; the order of accuracy shown in Figure 20 is the
arithmetic mean of the orders of accuracy of each velocity component. The error norms are taken
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(a) (b)

(d)(c)

Figure 20. Spatial order of accuracy, cylinder in driven cavity, Re= 20: (a) order of accuracy Method 1,
CV method; (b) order of accuracy Method 2, CV method; (c) order of accuracy Method 1, L2 norm; and

(d) order of accuracy Method 2, L2 norm.

over all interior grid points which lie on or outside the cylinder. As the finer grids contain the
coarser grids, the error norms are defined on the grid points on the coarsest grid. The solution
obtained on the finest (6412) grid is used to represent the exact solution in Equation (44). The
x axis ‘grid group’ in Figure 20 are the grids used; for Method 1 they are (112, 212, 6412),
(212, 412, 6412), (412, 812, 6412), (812, 1612, 6412), (812, 3212, 6412); for Method 2 they are
(112, 212, 412), (212, 412, 812), (412, 812, 1612), (812, 1612, 3212), (1612, 3212, 6412).

Using Method 1, the CV method is found to be greater than second-order accurate (Figure 20(a))
while using Method 2, the CV method is found to be nearly second-order accurate (Figure 20(b)).
Figure 20(c) and (d) shows the PVR method to have a slightly lower order of accuracy than either
the BI or CV method. The CV method has the highest order of accuracy. However, all methods
converge toward second-order accuracy, indicating that these immersed boundary methods have
maintained the second-order spatial accuracy of the numerical scheme.
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10. PRESSURE

At immersed boundary points, the modified momentum equations contain a term of the form
un+1 − (LNB() + L IB(un+1

IB ))=�t (S(un+1,un . . .) − ∇ pn+1) (PV method) or un+1 − (LNB() +
L IB(un+1

IB ))=�t/�(S(un+1, un . . .)−∇ pn+1) (PVR and CV methods). Assume that as �t → 0 or
�→ ∞, the velocity converges and becomes independent of � and �t . Therefore, the only term
on the right-hand side that is significant is −�t∇ pn+1 or −(�t/�)∇ pn+1. Furthermore, since the
velocity converges and, therefore, un+1 − (LNB() + L IB(un+1

IB )) converges to a non-zero constant,
the pressure gradient at immersed boundary points must increase as 1/�t or �. Figure 21 shows
the bounded behavior of the L∞ norm of the pressure gradient at non-immersed boundary points
and the unbounded behavior of the L∞ norm of the pressure gradient at immersed boundary points
when either �t → 0 in the PV method or �→ ∞ in the CV method (the PVR method behaves
like the CV method). As a result of the criteria used to select immersed boundary points, each
immersed boundary point belongs to at least one mass conservation cell in which all velocity points
are immersed boundary points. As a two-point stencil is used to discretize the pressure gradient,
the pressure, in mass conservation cells in which all velocity points are immersed boundary points,
is only used in computing the pressure gradient at immersed boundary points. Therefore, it can be
concluded that norms of the pressure in mass conservation cells in which all velocity points are
immersed boundary points also do not asymptote as �t → 0 in the PV method or �→ ∞ in the
PVR or CV methods. For this reason, the authors believe the pressure at these points is unphysical.
This unphysical behavior is shown in Figure 22 as the magnitude of the pressure increases as �t de-
creases in the PV method or � increases in the CV method (the PVR method behaves similar to the
CV method). However, as norms of the pressure gradient at non-immersed boundary points asymp-
tote, the pressure in mass conservation cells in which not all velocity points are immersed boundary
points must also asymptote. Therefore, if pressure is desired at mass conservation cells in which
all velocity points are immersed boundary points, it could be obtained by interpolating from the
pressure in mass conservation cells in which not all velocity points are immersed boundary points.

(a) (b)

Figure 21. The pressure gradient at immersed boundary and non-immersed boundary
points, a two-dimensional obstacle: (a) the PV method, explicit convection–diffusion time
integration, Re= 20, 40× 20 grid and (b) the CV method, implicit convection–diffusion

time integration, Re= 106, 161× 81 grid.
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Figure 22. Pressure contours, a two-dimensional obstacle: (a) the PV method, explicit convec-
tion–diffusion time integration, Re= 20, 40× 20 grid and (b) CV method, implicit convection–diffusion

time integration, Re= 106, 161× 81 grid.

The behavior in which the pressure increases without bound as �t → 0 in the PV method or
�→ ∞ in the PVR or CV method in one mass conservation cell while remaining bounded in
a neighboring cell gives rise to the oscillitory pressure fields shown in Figure 22. It should be
emphasized though that the velocity does not exhibit this same behavior, but remains bounded
throughout the computational domain. This unphysical behavior of pressure near the immersed
boundary has also been noticed by [9]; in this work, the pressure was corrected by solving an
additional Poisson equation after the velocity field has been obtained. Note that for the BI method,
the pressure at points in which all four surrounding velocities are immersed boundary points is
completely decoupled from all other discrete velocities and pressure, and cannot be considered
physical.

11. CONCLUSION

The performance of commonly used schemes of the immersed boundary method is examined from
the perspective of mass conservation and satisfaction of the boundary conditions on the immersed
boundary. The use of the velocity in the method of [5] to define the force density is shown to
result in an inconsistent set of discrete equations. With the iterative solver used in the present
work, this inconsistency results in an inability to obtain a divergence-free velocity, although the
boundary conditions resulting from the immersed boundary are satisfied. If the pseudo-velocities
are used to define the force density, the problem of an inconsistent set of equations is removed
and a divergence-free velocity can be obtained. However, the use of the pseudo-velocities to define
the force density in the method of [5] is shown to be inaccurate as the boundary conditions on
the immersed boundary are poorly satisfied. If the pseudo-velocities are used to define the force
density, the boundary conditions on the immersed boundary are shown to be strongly dependent
on the time step and are better satisfied as the time step is reduced; however, this reduction of the
time step results in a large computational expense.
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A new method (PVR) that reduces the time step only at immersed boundary points is presented.
This method greatly improves satisfaction of the boundary conditions on the immersed boundary
without increasing the computational expense. However, for problems in which the immersed
boundary is moving, this method can perform poorly. In order to remedy this, a second new
method (CV) which performs well on moving immersed boundary problems is presented. This
method is based on the concept of remaining as close as possible to the boundary conditions
defined by the immersed boundary stencil, while maintaining a divergence-free velocity. This
method, which is based on constrained optimization, is shown to be related to the PVR method.
The methods are demonstrated on four different flows (a two-dimensional obstacle, a structure with
a vibrating wall, a cylinder in crossflow and a cylinder in a channel), on which grid-independent
results are shown and compared to either an analytical solution or the results of others. Second-
order convergence in the grid spacing of the new methods is shown through numerical experiments.
As the overall spatial accuracy of the discretized Navier–Stokes equations is also second order,
this shows that the spatial order of accuracy is not adversely affected by the new methods. While
the example problems in the present work are two dimensional for computational convenience,
the new methods have also been applied to three-dimensional flows without encountering any
additional difficulties or necessary modifications.

The concept of the immersed boundary method is that a force density is added to the Navier–
Stokes equations to satisfy the boundary conditions at the immersed boundary. In the method of [5],
the force density is not explicitly computed and added to the Navier–Stokes equations, however,
the force density, which represents the force of the immersed boundary on the fluid, can be very
useful information. The unbounded behavior of the local force density and the bounded behavior
of the integral of the force density over the entire region in which the Navier–Stokes equations
are solved is shown. The value of this integral is shown to depend on the iterative method used to
solve the discretized Navier–Stokes equations and the residual of the iterative process. A method
of computing the force density which is independent of the residual of the iterative method is
presented. This method is shown to allow accurate computations of the total force of the fluid
on the immersed boundary regardless of the residual level, which is particularly important for
problems where the motion of the immersed boundary is determined by the force of the fluid.

An explanation is given for the observed unphysical and unbounded behavior of the pressure at
certain locations near the immersed boundary. This behavior is shown to occur in all the methods
examined in the present work.
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